A Generalization of the Cartan- Brauer-hua Theorem
نویسنده
چکیده
2. G. Higman, On finite groups of exponent five, Proc. Cambridge Philos. Soc. 52 (1956), 381-390. 3. A. I. Kostrikin, On Burnside's problem, Dokl. Akad. Nauk SSSR 119 (1958), 1081-1084. (Russian) 4. M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. École Norm. Sup. (3) 71 (1954), 101-190. 5. H. Zassenhaus, Ein Verfahren, jeder endlichen p-Gruppe eine Lie-Ring mit der Charakteristik p zuzuordnen, Abh. Math. Sem. Hamburg Univ. 13 (1939), 200-207.
منابع مشابه
On the Geometry of Field Extensions
We investigate the spread arising from a field extension and its chains. The major tool in this paper is the concept of transversal lines of a chain which is closely related with the Cartan-Brauer-Hua theorem. Provided that one chain has a "sufficiently large" number of such lines, both this chain as well as the given spread permit a simple geometric description by means of collineations.
متن کاملOn the Semi-simplicity of the Cyclotomic Brauer Algebras
In this paper, a criterion on the semi-simplicity of the cyclotomic Brauer algebras is given. This result can be considered as a generalization of Wenzl’s theorem on Brauer algebras [27], which was known as Hanlon-Wales conjecture before.
متن کاملGeneralization of Titchmarsh's Theorem for the Dunkl Transform
Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE DUNKL TRANSFORM IN THE SPACE $L^P(R)$
In this paper, using a generalized Dunkl translation operator, we obtain a generalization of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the$(psi,p)$-Lipschitz Dunkl condition in the space $mathrm{L}_{p,alpha}=mathrm{L}^{p}(mathbb{R},|x|^{2alpha+1}dx)$, where $alpha>-frac{1}{2}$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010